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1. Introduction and summary

One of the challenges for any quantum theory of gravity is to provide a microscopic de-

scription of the Bekenstein-Hawking entropy of black holes. Such a description has been

provided for certain classes of extremal [1 – 4] and near-extremal [5 – 7] black holes in the
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framework of superstring theory. The black holes in these examples are realized by D-

branes, and the microscopic degrees of freedom consist of the D-branes open strings. The

microscopic description of the Bekenstein-Hawking entropy of non-extremal black holes

remained largely as an open problem.

Brane systems and their open string degrees of freedom have been shown to approx-

imately give the correct behavior of black branes Bekenstein-Hawking entropy in certain

cases [8, 9]. However, it is not clear why these systems of branes and their open string

degrees of freedom should be related to the black branes whose entropies they are supposed

to count. The purpose of this paper is to make a step towards understanding the relation

between branes-antibranes systems and non-extremal black branes.

An intriguing similarity between the black brane Bekenstein-Hawking entropy and the

field theory entropy of thermal branes-antibranes has been found in [9]. The low-frequency

absorption and emission probabilities are similar as well, and so are the entropies in the

rotating and charged cases [9 – 11]. Similar works have been done for p 6= 3 [12, 13] and

multicharged black holes [14]. An overview of these models as well as a detailed discussion

appears in [10].

In the following we will review the arguments of [9]. Consider a thermal system of

N D3 − D̄3 pairs of branes with temperature T , and gsN À 1. The mass squared of the

strings stretched between the branes and the antibranes, and in particular the tachyon t,

is expected to receive at weak coupling a correction of order ∆m2 ∼ gsNT 2. At strong

coupling we parameterize the correction by

∆m2 ∼ (gsN)αT 2 (1.1)

with α some positive number. The mass squared of the tachyon is then

m2
t ∼ (gsN)αT 2 − l−2

s . (1.2)

Thus the tachyon mass becomes much larger than T in the regime

#(gsN)−α/2l−1
s < T ¿ l−1

s (1.3)

where # stands for an unknown numerical constant. The first inequality implies that the

open strings stretched between D-branes and the anti D-branes are massive and the system

is stable. Effectively, the open strings attached to the D-branes are decoupled from the

open strings attached to the anti D-branes, and the open strings degrees of freedom can

be counted by summing up those attached to the D-branes and those attached to the anti

D-branes [9]. Moreover, the second inequality implies that we can ignore the massive open

string modes and count only the massless ones, thus counting the field theory degrees of

freedom. We will take gs ¿ 1 in order to work at string tree level, which means that

N À 1.

Since the system consists of two decoupled subsystems, one of D-branes and the other

of anti D-branes, one can calculate its energy M and entropy S as functions of N , T

and the 3-worldvolume V . Pairs of D-brane and anti D-brane can still be created and

annihilated. However, they are not emitted as closed strings but rather as open strings
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since gs ¿ 1. The number of pairs N is related to the temperature T , and maximizing

the entropy S(M,N, V ) with respect to N , we obtain the entropy in the microcanonical

ensemble S(M,V ). It turns out that this result is, up to a factor of 23/4, the same as

the entropy of a chargeless black 3-brane as a function of the mass and 3-volume [9].

The temperature of the D3 − D̄3 branes system T = (∂M/∂S)V is (gsN)−1/4l−1
s up to a

numerical factor. Thus, one finds that a thermal D3 − D̄3 branes system in the regime

gsN À 1 and at temperature T = (gsN)−1/4l−1
s (up to a numerical factor) is at thermal

equilibrium, and has the same entropy S(M,V ) as a black 3-brane, up to a factor of 23/4.

Since the system turns out to be stable only at temperature T ∼ (gsN)−1/4l−1
s , the

analysis is self-consistent only if this temperature turns out to be in the regime (1.3). This

is satisfied only if α ≥ 1/2. If α = 1/2, the consistency check requires a calculation of the

exact numerical coefficient in (1.3). In the weakly coupled regime (gsN ¿ 1) α = 1, but

for gsN À 1 the value of α is unknown.

The aim of this paper is to propose a possible explanation for this intriguing similarity

between the black branes Bekenstein-Hawking entropy and the field theory entropy of

thermal branes-antibranes. We will work in the supergravity framework and construct a

relation between thermal chargeless non-extremal black three-branes and thermal Dirichlet

branes-antibranes systems. The relation that we find is depicted in figure 1.

The paper is organized as follows.

In section 2 we analyze supergravity backgrounds candidate for describing Dp branes-

antibranes and Dp non-BPS branes. This is done by considering the space of supergravity

solutions with the appropriate symmetries, constructed in [15] and studied in [16]. All these

solutions posses a naked curvature singularity. When considering type IIA supergravity

we can distinguish ”bad” naked curvature singularities from ”good” ones [17] by lifting

to eleven dimensions. We find that for each p there is precisely one solution with the

appropriate symmetries and no ”bad” naked singularity. This solution is the dimensional

reduction of a bubble solution in eleven dimensions. It is a limit of a family of solutions

which describe D-branes wrapped on a non-supersymmetric cycle [18, 19], and we identify

it with the Dp branes-antibranes (or non-BPS branes) system.

In section 3 we discuss descent relations among type IIA and type IIB D-brane sys-

tems [20 – 22]. These relations arise from orbifoldings by (−1)FsL , where FsL is the space-

time fermion number arising from the left worldsheet sector. This orbifolding maps the

type IIA superstring theory to type IIB and vice versa. Its effect on N brane-antibrane

pairs or N non-BPS branes has been discussed for N = 1 in [20, 21]. We review this dis-

cussion and generalize the study to N > 1. We find that there are different ways to realize

such an orbifold, one of which does not change the charge of the solution. We discuss how

such an orbifold should be defined in superstring theory on a background of a chargeless

supergravity solution. We argue that the orbifold action can be defined so that the form of

the solution (i.e. the metric and dilaton) remains unchanged, perhaps up to changing the

ADM mass by a numerical factor.

In section 4 we discuss in detail the relation between the supergravity solution describ-

ing non-extremal black 3-branes and the supergravity solution, which we proposed as a

description of thermal D3 branes-antibranes system. This relation is depicted in figure 1.
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Figure 1: Relating thermal black 3-branes and the D3 − D̄3 branes system.

In particular we assume that descent relations between type IIA and type IIB brane sys-

tems hold at large gs. We also find that both the black 3-branes and the branes-antibranes

system annihilate to closed strings at related limits. We remark on the degrees of freedom

of the black 3-brane and about charged black 3-branes, still far from extremality. In section

5 we discuss possible generalizations of this relation.

In appendices A, B and C we provide details of certain aspects of time-independent

supergravity solutions with an ISO(p)×SO(9−p) symmetry. In appendix D we comment

on systems with N non-BPS branes for N > 1. In appendices E and F we study certain

suggestions regarding the field theory of the D3 branes-antibranes systems.

2. The supergravity description of Dp − D̄p and non-BPS Dp-branes

In this section we consider time-independent chargeless asymptotically flat type II super-

gravity solutions with an ISO(p)×SO(9-p) symmetry. We show that there are exactly two
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classes of solutions that do not have ”bad” naked curvature singularity [17]. One class

is the Horowitz-Strominger black p-branes. We identify the second class as the Dp − D̄p

or non-BPS Dp-branes solution, depending on whether p is even or odd and whether we

consider type IIA or type IIB supergravity. In type IIA solutions of the latter class are

dimensional reduction of eleven dimension ”bubble” solutions.

The Dp − D̄p (non-BPS Dp) branes are solutions of type IIB (IIA) superstrings for

odd p, and vice versa for even p. They have an ISO(1,p)×SO(9-p) symmetry and are

chargeless. In order to identify the corresponding type II supergravity solutions, we consider

all asymptotically flat time-independent chargeless solutions with this symmetry. In fact we

generalize the discussion and consider all chargeless asymptotically flat time-independent

solutions with ISO(p)×SO(9-p) symmetry. These have been constructed in [15] and include

four parameters: r0, c1, c2 and c3. One combination of the parameters is related to the

ADM mass and c3 is related to the charge. The chargeless solution in the Einstein frame

reads

ds2 = (f−
f+

)
(7−p)(3−p) c1+(2(7−p)+ 1

4 (3−p)2)c2−4(7−p)c3k

32

(
−(f−

f+
)−c2dt2 + (dxi)2

)

+(f− f+)
2

7−p (f−
f+

)
−(p+1)(3−p) c1+1

4 (3−p)2c2+4(p+1)c3k

32

(
dr2 + r2dΩ2

8−p

)

eφ−φ∞ = (f−
f+

)
7−p
64

(4(p+1) c1−(3−p)c2)+ 3−p
4

c3k

f± ≡ 1 ±
(

r0
r

)7−p

k ≡
√

−c2
1 + 1

4

(
3−p
2 c1 + 7−p

8 c2

)2
+ 28−p

7−p − 7 c22
16 ,

(2.1)

i=1,. . . p, and c3 = ±1. The solution is invariant under a simultaneous flip of the signs of

all four parameters c1, c2, c3 and r0
7−p. We will therefore assume in the following that

r0
7−p > 0.

The black p-branes solutions have 1 [15, 23]

(c1, c2, c3) = (
3 − p

2(7 − p)
,−2,−1) . (2.2)

All other solutions for 1 < p < 7, and in particular, all the chargeless solutions with

ISO(1,p)×SO(9-p) symmetry (i.e. with c2 = 0) have a naked curvature singularity at

r = r0.

When p = −1, c2 must be set to zero and (2.2) cannot be satisfied. Thus there is no

chargeless black −1-brane. c1 is redundant and so there is only one solution in (2.1), which

we will mention later. When p = 0 the parameter c2 is redundant and (2.2) is equivalent

to (c1, c2, c3) = (12
7 + 3

4c2, c2,−1). As in 1 < p < 7, this is the only solution with no naked

curvature singularity. When p = 1 there is one other solution, in addition to (2.2), with no

naked singularity, where (c1, c2, c3) = (7/6, 2,−1). This is the nine-dimensional Euclidean

Schwarzschild black hole with a flat time coordinate.

1The isotropic coordinates cover twice the region outside the horizon of the black brane, and do not

cover the region behind the horizon. Indeed the solution is invariant under r → r0
2/r, so that the r > r0

and r < r0 regions cover the same region in spacetime. It is geodetically incomplete at r = r0. In the region

behind the horizon dr is timelike and isotropic coordinates cannot be defined.
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A solution with naked curvature singularity is often pathological since the singularity

can be seen by asymptotic observers and its resolution may affect the whole spacetime.

Obviously, since the curvature corrections near the singularity are large, the supergravity

approximation is not valid. Criteria for distinguishing pathological (”bad”) from non-

pathological (”good”) naked singularities in asymptotically AdS5 backgrounds have been

proposed in [17]. There, it has been suggested that solutions with naked curvature singu-

larities are pathological if they are neither a limit of a family of solutions with no naked

curvature singularity nor a dimensional reduction of such a solution. It has also been ar-

gued that the nature of naked curvature singularities may be independent of the spacetime

asymptotics.

In some cases, naked curvature singularities can be resolved by incision of the geometry

in a particular radius where some cycle shrinks to a string scale size, while the curvature

remains small [24, 25]. For the supergravity approximation to remain valid asymptotically,

and in particular for winding states to be negligible asymptotically, that cycle must be

asymptotically large in string units. Therefore, for such a mechanism to work, the super-

gravity solution must have two different length scales (in addition to the asymptotic cycle

scale), one determines the curvature at the incision radius and the other determines the

cycle scale there 2. Note that if the asymptotic volume of the T 4 in [24, 25] is arbitrarily

large in string units, then the geometry is arbitrarily close to the BPS D6 (or D5) geometry,

which satisfies the criteria of [17] for a ”good” singularity. However, in the solutions (2.1)

there is only one such length scale, r0, so the metric cannot be resolved by such an incision.

Type IIA supergravity solutions can be thought of as a dimensional reduction from

eleven dimensions, and the eleven-dimensional solution may have no naked curvature sin-

gularity. This happens precisely for just one solution for every −1 ≤ p < 7, that is for

(c1, c2, c3) = (
12 − 2p

7 − p
, 0, sign(2 − p)) . (2.3)

Note that for p = 2 the two signs of c3 are equivalent, for p = 0 the parameter c2 is

redundant and the solution is equivalent to (c1, c2, c3) = (12
7 + 3

4c2, c2, 1). For p = −1, c2

must be set to zero and c1 is redundant. Thus, there is only one solution up to changing

the sign of c3, which is equivalent to changing the sign of r0. This solution is a dimensional

reduction of the eleven-dimensional black hole. We will argue in the next subsection that

these type IIA solutions (2.3) describe the Dp − D̄p (non-BPS Dp-branes) for even (odd)

p.

Finally, note that for the solutions with

(7 − p)(3 − p)c1 + (2(7 − p) +
1

4
(3 − p)2 − 32)c2 − 4(7 − p)c3k > 0 , (2.4)

the naked singularity is infinitely redshifted with respect to an asymptotic observer. Thus,

we can ask whether such a singularity is ”bad” as it seems that regions far away from

the singularity may not be significantly influenced by it. However, the particle production

rate of Bekenstein-Hawking radiation measured by an asymptotic observer, calculated in

2In [24, 25] these length scales where r6 and r2, or r5 and r1.
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appendix B, is infinite. Alternatively, by analytically continuing the metric to Euclidean

signature, there is no way to define a temperature so that the singularity is resolved.

This can be understood by noting that all the solutions which have a naked curvature

singularity in the string frame, which means large α′R, have a naked curvature singularity

in the Einstein frame as well, which dictates the temperature. Nevertheless, upon lifting

to eleven dimensions, temperature can sometimes be defined so that spacetime is smooth,

as will be demonstrated below. We may interpret this as a strong coupling effect. As is

shown in appendix B, among the solutions with an ISO(p+1)×SO(9−p) symmetry, this

can be done only for two sets of solutions, which turn out to have a flat time direction in

eleven dimensions. One set of solutions is (2.3) and the other, given by (2.3) with changing

the signs of c1 and c3, is having negative ADM mass and therefore unphysical.

2.1 Interpreting the ”good” supergravity solutions

In the following we will argue that the type IIA solutions (2.3) describe the Dp − D̄p

(non-BPS Dp-branes) for even (odd) p. At first sight, one may hope to distinguish the

branes-antibranes supergravity solutions from the rest by the energy-momentum tensor.

Computing the components of the energy-momentum tensor at the singularity in r = r0

can be done by using the method of [26]. The branes-antibranes system at zero temperature

is expected to obey the relation Tij = −T00δij [9]. However we show in appendix A, that this

relation holds for all the chargeless supergravity solutions with the appropriate symmetry

ISO(p + 1) × SO(9 − p).

The type IIA solutions (2.3) have been considered in [19]. Their lift to eleven dimen-

sions is the Euclidean black p-branes background with a flat time direction. These solutions

are known as the (static) bubble solutions.

For p = 6, the ten-dimensional solution is the D6 − D̄6 system [18], which is the

a → 0 limit of a family of solutions of branes and the antibranes separated by a distance

of 2a (for large a). The branes-antibranes worldvolume is S0 × T 6 × R for any a 6= 0.

For p < 6, the ten-dimensional solutions have been shown to be a limit of a family of

solutions of D6-branes with an S6−p ×T p ×R worldvolume topology [19]. Therefore, these

solutions describe D-branes configurations on which open strings can end. We identify

them with Dp branes-antibranes (non-BPS Dp-brane) for even (odd) p, which are the

objects in type IIA superstring theory that are chargeless and posses the same symmetry

ISO(1,p)×SO(9-p) and on which open strings can end. Similar interpretation has been pro-

posed in [19]. Another possible interpretation of this configuration is D6-branes wrapping

a non-supersymmetric vanishing cycle.

We may argue why Dp branes-antibranes system for even p can be expected to arise

as a limit of a family of solutions with an S6−p × T p × R topology. Dp BPS branes

(non-BPS Dp-branes) for even (odd) p < 6 can be thought of as solitonic solutions of a

D6− D̄6 adjacent pair [21, 27]. Dp BPS branes source a non-zero Cp+1-form, which arises

in describing them as solitons from the term

∫
Cp+1 ∧ F . . . ∧ F (2.5)
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in the D6-brane worldvolume action, and from a similar term, with an opposite sign, in

the D6-antibrane worldvolume action.

Thus, a Dp-BPS brane is an M6−p × T p × R submanifold of the D6 − D̄6, with

∫

M6−p

F1 ∧ . . . F1 −
∫

M6−p

F2 ∧ . . . F2 6= 0 (2.6)

where F1 is the gauge field strength of the D6-brane and F2 the gauge field strength of the

D6-antibrane. The Dp brane-antibrane pair corresponds to two such solitons with opposite

charges, in the limit where they are on top of each other, and is having the same topology.

One may hope to be able to identify open strings stretched between the branes as

M2-branes from the M-theory point of view, as in [18, 28]. However open strings which

were identified so were only those stretched between different branes which were located

in different points in space. The geometries we have considered for p < 6 did not include

different branes located in different points in space, and therefore it may be impossible to

make a similar identification here.

The bubble solution is unstable to small perturbations [29]. Thus the supergravity

solutions which correspond to the Dp− D̄p system is unstable at large gs, which is hardly

surprising. This generalizes the instability of the D6 − D̄6 solution to small perturba-

tions [18, 30, 31]. In the following we ignore these instabilities, just as we ignore the black

three-brane instability to small perturbations [32]. It would be interesting to consider what

is the effect of these instabilities on backgrounds on a thermal time cycle, but this is beyond

the scope of this work.

2.2 Comparing to the boundary states approach

We now compare our results to those obtained by a different approach, which uses branes

boundary states [16, 33] (for an interpretation of black p-branes based on this approach

see [34]).

The BPS brane boundary state receives contributions from two closed string sectors,

NSNS and RR. The non-BPS brane boundary state receives contribution only from the

NSNS sector, which is identical to the NSNS contribution of the BPS Dp-brane, up to a

factor which reflects the different tensions of the two [35].

For the BPS brane, the boundary state couplings to a graviton, a dilaton and an RR

form have been shown to be equal (up to an overall factor) to the sub-leading terms3

of the asymptotic metric, dilaton and RR form, respectively. This reflects the fact that

due to closed-open string duality, the coupling of a closed string to the brane can also be

calculated from supergravity for on-shell states [36].

Now consider the non-BPS brane. It has the same contribution from the NSNS sector

as the BPS brane (up to a factor), so we may expect that the sub-leading term of the

asymptotic metric and dilaton would be the same as in the BPS brane, up to an overall

factor. Thus a stack of non-BPS branes of ADM-mass M may be expected to have the

3This is the first correction to a flat background, which is ∼ 1/r7−p or, in Fourier transform, ∼ Vp/k⊥
2,

where k⊥ is the momentum transverse to the brane.
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same asymptotic metric and dilaton (including the sub-leading term) as a stack of BPS

branes of the same ADM mass. This means that (c1, c2, c3) = (0, 0,−1) in (2.1) for every

p, as has been shown by an equivalent method (using a BPS Dp-brane probe) in [16] (see

also [33]). This is a different point in the parameter space than (2.3), the two coinciding

only for p = 6, in which case they coincide with [18] as well.

However, for the chargeless supergravity solutions in question, there is no limit in

which the supergravity solution is decoupled from the asymptotic regime, and thus no

limit in which open and closed strings decouple 4. We show this qualitatively in appendix

C (in terms of the effective potential felt by a minimally coupled scalar). In particular, for

the non-BPS brane boundary state, the couplings to the closed string fields are expected

to receive higher loop corrections, which vanish in the BPS case. Thus for large gsN ,

where supergravity may be valid, the result can be different from the naive boundary state

calculation. Indeed we have seen that the (c1, c2, c3) = (0, 0,−1) supergravity solution (for

p 6= 6) has a ”bad” naked singularity.

3. Descent relations among supergravity solutions

In this section we discuss the effect of taking a (−1)FsL orbifold of chargeless supergravity

solutions. We argue that in these solutions the background fields do not change as a result

of this orbifolding (except for a possible change in the ADM mass). We use this in the

next section to propose that the black 3-brane in type IIB, orbifolded by (−1)FsL , gives the

black 3-brane in type IIA. Orbifold in terms of open strings, as well as non-BPS Dp-branes,

are defined at gs = 0, and throughout this section we take gs to be zero or small. However

in other sections we assume that there is a generalization of these to large gs as well, and in

particular that the (−1)FsL symmetry is non anomalous. We will begin with a brief review

of known results.

3.1 Orbifolding by (−1)FsL: a brief review

Type IIA and type IIB string theories are related by orbifolding by (−1)FsL , where FsL

is the spacetime fermion number coming from fields which are left-moving on the world-

sheet [20]. Let us first summarize some of the results described in [20 – 22].

The action of (−1)FsL flips signs of p-forms and therefore takes a D-brane to an anti

D-brane and vice versa. A Dp − D̄p pair is invariant under this action. The open string

spectrum of a Dp − D̄p pair has 4 sectors, two of which (corresponding to open strings

with both ends attached to the brane or both to the antibrane) have the GSO projection

(−1)F = 1, where F is the worldsheet fermion number, and the other two (corresponding

to open strings with one end attached to the brane and the other to the antibrane) have

the GSO projection (−1)F = −1. In particular the lowest mass content consists of two

real gauge fields degrees of freedom and two real tachyonic degrees of freedom (i.e. a single

complex tachyon). The four sectors can be described by a 2×2 hermitian CP (Chan-Paton)

matrix.

4In later sections we use the tools of [9] to discuss such an approximate duality in a finite temperature

case, for a particular temperature.
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Orbifolding a type IIA (IIB) theory with a Dp−D̄p pair by (−1)FsL changes the theory

to type IIB (IIA) with a non-BPS Dp-brane. Thus the effect of the orbifold on the open

string spectrum can be described by a matrix S acting on the CP matrix Λ as: Λ → SΛS−1,

where S is either σ1 or (equivalently) σ2 and the remaining degrees of freedom after the

orbifolding have CP matrices 1 and S. Let us take S = σ1.

In the type IIB (IIA) obtained in this way, RR closed strings are in the twisted sector.

Therefore an RR insertion in the worldsheet creates a branch cut. If the worldsheet has

a boundary, then the boundary on the two sides of the branch cut would be attached, in

the language of the original type IIA (IIB), to a brane on one side and to an antibrane on

the other side. The point where the branch cut meets the boundary must have a σ1 CP

factor. This means that an RR p-form insertion may have a non-vanishing (off-shell) two

point function with an open string with a σ1 CP factor, which indeed it has [21].

By further orbifolding a type IIB (IIA) theory on a non-BPS Dp-brane by (−1)FsL ,

one gets a type IIA (IIB) theory on a BPS Dp-brane (or an antibrane). This is because

the type IIB (IIA) RR closed string is odd under the orbifold action, which implies that an

open string with a σ1 CP factor is odd as well. The only open string sector which survives

the orbifolding is the one with CP matrix 1, which has the GSO projection (−1)F = 1,

and so the open string spectrum is identical to that of a BPS Dp-brane (or an antibrane).

To summarize, taking the (−1)FsL orbifold twice on a Dp − D̄p pair results in a BPS

Dp-brane (or an antibrane), while the closed string theory (either type IIA or type IIB)

returns to itself.

3.2 (−1)FsL orbifolds of N brane-antibrane pairs

For N Dp − D̄p pairs with N > 1, taking the (−1)FsL orbifold once, we get N non-BPS

Dp-branes. We will now show that taking the (−1)FsL orbifold again takes us to a system

of N1 Dp-branes and N2 ≡ N − N1 Dp-antibranes, where the value of N1 depends on the

realization of the orbifold action. In appendix D we propose a possible interpretation in

terms of non-BPS brane orientation.

Consider a system of N Dp-branes and N Dp-antibranes in type IIA (p is even). The

following argument can be repeated with type IIA and type IIB interchanged (for odd p).

The open string spectrum of a system of N Dp-branes and N Dp-antibranes on top of each

other can be written as a 2N × 2N hermitian matrix

(
A T

T̄ B

)
, (3.1)

where A (B) are in the adjoint representation of the U(N) gauge group on the branes

(antibranes) and have GSO projection (−1)F = 1, while T and T̄ describe the open strings

attached between the branes and the antibranes, transforming in the bi-fundamental rep-

resentation of U(N) × U(N) and have GSO projection (−1)F = −1, thus including N2

complex tachyonic degrees of freedom.

The action of (−1)FsL is implemented in the open string spectrum by a matrix S1,

taking any CP matrix Λ to S1ΛS1
−1. S1 inverts branes and antibranes and we may take
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it to be

S1 =

(
0 1N×N

1N×N 0

)
. (3.2)

Only states even under (−1)FsL survive orbifolding by it, and these are states with

A = B and T = T̄ . Thus we are left with states whose CP matrix is of the form
(

A T

T A

)
(3.3)

with A and T hermitian. Note that now there are N2 real tachyonic degrees of freedom,

and the open string spectrum is that of N non-BPS Dp-branes of type IIB.

A type IIB RR-field (such as the p-form) is in the twisted sector. Thus its vertex

operator creates a branch cut in the worldsheet. For a worldsheet with a boundary, at the

point where the branch cut meets the boundary there should be a CP matrix:

C ≡
(

0 1N×N

1N×N 0

)
(3.4)

This is because the (−1)FsL action inverts type IIA branes and antibranes. This means

that the RR p-form may have a non-vanishing (off-shell) coupling to a tachyon on the non-

BPS Dp-branes with the CP factor (3.4). This coupling is indeed non-zero, since D(p − 1)

BPS branes can be described as solitonic solutions to the tachyon potential on the non-

BPS Dp-branes, and the p-form should therefore be coupled to the derivative of one of the

tachyonic degrees of freedom which live on the non-BPS Dp-brane [21].

Let us now consider the action of a second (−1)FsL , orbifolding by which takes the

type IIB back to type IIA. This (−1)FsL is implemented in the open string spectrum by a

matrix S2, taking any CP matrix Λ to S2ΛS2
−1. This (−1)FsL has the following properties:

its square is the identity, Type IIB RR fields are odd under it and therefore so are states

with CP factor (3.4), and it does not mix A and T in (3.3). Therefore S2 is equivalent5 to

a matrix of the following form (
X 0

0 −X

)
(3.5)

where X is an N × N matrix with eigenvalues ±1. We may diagonalize X and get the

diagonal (+1,+1 . . . ,+1,−1 . . . ,−1), with N1 times the eigenvalue +1 and N2 ≡ N − N1

times the eigenvalue −1, for some 0 ≤ N1 ≤ N .

The open string degrees of freedom which are left invariant by this (−1)FsL consist of

N1
2 +N2

2 real degrees of freedom from the sector whose GSO projection is (−1)F = 1, and

2N1N2 real degrees of freedom from the sector whose GSO projection is (−1)F = −1. This

is the open string spectrum of a system of N1 branes and N2 antibranes (or N1 antibranes

and N2 branes: there is a two-fold ambiguity, resembling the symmetry N1 ↔ N2 which is

a consequence of the equivalence of S2 and −S2).

5Equivalence between two choices of S2 means that the same (−1)FsL action is induced by both.
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3.3 Orbifolding by (−1)FsL in the supergravity framework

For large N (in fact, for every even N) the orbifolding procedure can be defined so that

the result of subsequent orbifoldings on a chargeless system (i.e. one with equal number of

branes and antibranes) is again a chargeless system. In the supergravity limit gsN À 1,

for a solution with no RR background fields, such an orbifolding procedure does not create

RR background fields. We will henceforth use this prescription for the (−1)FsL orbifold.

Orbifolding twice takes us from one Dp−D̄p solution to another, so both should correspond

to the same supergravity solution (i.e. the same metric and dilaton), except for a change

in the ADM mass: the total number of brane-antibrane pairs is cut by half after every two

subsequent orbifoldings, and this seem to mean that the mass of the system is cut by half

as well. In the N = 1 case this is manifested by the fact that the tension of the brane is

multiplied by a 1/
√

2 factor after performing the orbifold once [21]. This analysis assumes

gs ∼ 0, so we have N ∼ ∞, and it may be speculated that the correct way to take the

supergravity limit is to have N unchanged by the orbifold procedure. If this is true, then

orbifolding twice does not change the background fields at all. Such a result may be desired

from the closed string point of view, at least for small asymptotic string coupling gs, as we

will now explain.

If we take a Z2 orbifold of a Z2 orbifold of any string theory, where the second Z2 is

defined by flipping the sign of all twisted states of the first Z2, then the torus partition

function is the same as that of the original theory [37]. For a string theory whose worldsheet

field theory is not free, such as string theory on a curved background, the second Z2 orbifold

should be defined via the boundary conditions on the cycles of the worldsheet torus in the

torus partition function, rather than via its action on the spectrum. This is because the

torus partition function can no longer be computed as a sum over oscillators.

For a (−1)FsL orbifold, the twisted states are the RR and R-NS sectors, and the theory

has a new (−1)FsL symmetry which flips the sign of these. Thus, taking the (−1)FsL

orbifold twice on a closed string theory is precisely the Z2 orbifold of a Z2 orbifold we

have just described, and this gives us the original theory back, as is well known for the flat

background cases [21, 22].

Let us consider backgrounds of the type (2.1). A worldsheet action formulation of string

theory on these curved backgrounds is unknown, but far away from the singularity there

may be such a formulation which does not involve open strings, but still accounts for the

sub-leading (i.e. ∼ 1/r7−p) term of the asymptotic background fields. Then closed string

scattering amplitudes, computed to this sub-leading order of the background geometry,

are expected to remain unchanged after orbifolding the theory twice. Therefore these

sub-leading terms of the background fields should remain unchanged as well. For the

solutions (2.1) the whole geometry can be deduced from these sub-leading terms, and so

the whole geometry should not change after taking the (−1)FsL orbifold twice. It is then

natural to assume that one (−1)FsL orbifold does not change the metric as well, although it

takes us from type IIA to type IIB and vice versa (as noted in section 2, both supergravity

theories have the same set of chargeless solutions).

In the rest of this paper we assume, for simplicity, that the background including the
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ADM mass remains unchanged under the (−1)FsL orbifolding procedure. However the

assumption that the ADM mass does not change is not crucial to our following arguments,

since our results hold only up to a numerical factor, so they remain similar even if the

ADM mass does change by a numerical factor as a result of the orbifolding procedure.

4. D3 − D̄3 and black 3-branes

Let us start with the following (non-supersymmetric) supergravity solution in 11 dimensions

with time coordinate Wick rotated (i.e. a Euclidean solution)

ds2 = f(r)dx0
2 + f−1(r)dr2 + r2dΩ5

2 +

3∑

i=1

dxi
2 + dx10

2

Aλµν = 0

f(r) ≡ 1 −
(r0

r

)4
(4.1)

We will assume that r0 À M11
−1 (M11 being the eleventh dimensional Planck mass).

r takes the values r ≥ r0 and x0 is periodic with a period 2πR0 with R0 = r0/2, so that

the metric has no conical singularity at r = r0. We will also assume x10 and the xi-s are

periodic with periods 2πR10 and 2πRi respectively, where R1,2,3,10 À M11
−1. Under these

conditions, eleven dimensional supergravity is a good approximation for M-theory, on a

Euclidean background.

In the following section, we will reduce the solution either along the x0 or the x10 cycle

to obtain two dual Euclidean type IIA supergravity solutions. Each reduced solution is

an orbifold of a different type IIB solution by (−1)FsL , where we will pick the realization

for this orbifold as described in the previous section. We will get two related type IIB

Euclidean solutions. By performing S-duality we will arrive at a weakly coupled black

3-brane solution of type IIB supergravity on one side, and a Euclidean version of what we

interpret as the D3−D̄3 system on the other side. Finally we will change the identification

along the x10 or x0 cycle (the one we did not reduce along) as to include the action of (−1)Fs ,

where Fs is the spacetime fermion number. Thus we switch from modding the theory by

translations along the full x0 or x10 cycle, which we will denote P0 or P10, respectively, to

modding it by P0 · (−1)Fs or P10 · (−1)Fs , respectively. This changes the Euclidean solution

to a thermal one, and we end up with a thermal black 3-brane on one side, and a thermal

D3− D̄3 system on the other side. The two are not dual, since the last orbifolding is done

along cycles which are different in the original 11 dimensional theory. The two solutions

have no fermionic background fields, so the background fields do not change. Let us see

what implications this may have on the relation between the entropies of the two systems.

The Bekenstein-Hawking entropy depends only on the background fields, and this

suggests that moving from the Euclidean supergravity solutions to the thermal ones have

no effect on the entropy comparison we are making. Thus the black 3-brane and the

D3 − D̄3 should have the same entropy. For the D3 − D̄3 we are actually calculating the

entropy by using a field theory, and for completeness we should also examine the effect of
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changing the boundary conditions from Euclidean to thermal on the field theory entropy

computation.

The effective field theory that describes the thermal D3 − D̄3, and that is used for

calculating its entropy, is strongly coupled (gsN À 1). This theory (which is basically the

same as the one on D3s) admits a relation between strong coupling and weak coupling,

and in particular the entropies are related [7]. In the weakly coupled theory (weakly

coupled N = 4 SYM) the entropy comes from the degrees of freedom of the gauge field

supermultiplet. The bosonic degrees of freedom are not affected by changing the boundary

conditions from Euclidean to thermal (i.e. adding a (−1)F on the Euclidean time cycle).

Since these contribute half of the entropy, such a change in the boundary conditions will

change the calculated entropy by a factor of two at most. Due to the relation between

the entropies in weak and the strong couplings, this suggests that the strong coupling

entropy also changes by a numerical factor at most when moving from Euclidean to thermal

boundary conditions.

Thus we may expect the black 3-brane Bekenstein-Hawking entropy and the D3− D̄3

entropy to be of the same order of magnitude.

4.1 Reduction along x10: thermal black 3-branes

Reducing (4.1) along the x10 cycle gives the following type IIA supergravity solution (in

Einstein frame)

ds2 = (M11R10)
1/4

(
f(r)dx0

2 + f−1(r)dr2 + r2dΩ5
2 +

3∑

i=1

dxi
2

)

eφ = (R10M11)
3/2 À 1

ls = R10
−1/2M11

−3/2 (4.2)

with no p-forms. This is the Euclidean black 3-brane solution of type IIA.

The R10 dependence of the metric and dilaton can be understood by noting that we

may redefine x10 → (M11R10)
−1x10 before the reduction, so that the periodicity would be

independent of R10; This would give g10,10 = (M11R10)
2.

Note that the string coupling is large. However we know that this background will

get no large corrections because it is a dimensional reduction of the eleven-dimensional

background, where supergravity is a good approximation (thus the large string coupling

may give large corrections to the spectrum of the theory but not to the background fields).

This solution can be thought of as the result of orbifolding a type IIB string theory,

with the same background fields, by (−1)FsL . Indeed, we have argued in the last section

that the background is invariant under this operation, and the string theory changes from

type IIB to type IIA. The type IIB solution is a Euclidean black 3-brane. This is S-dual to

the black 3-brane solution with the same metric in Einstein frame and string length, but

with gs = eφ = (R10M11)
−3/2 ¿ 1.

The metric in string frame is now

ds2 = (M11R10)
−1/2

(
f(r)dx0

2 + f−1(r)dr2 + r2dΩ5
2 +

3∑

i=1

dxi
2

)
(4.3)
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By the following redefinitions

r → (M11R10)
−1/4r , r0 → rBH ≡ (M11R10)

−1/4r0

x0 → τ ≡ (M11R10)
−1/4x0 , xi → (M11R10)

−1/4xi (4.4)

for i = 1, 2, 3, one arrives at the usual Euclidean black 3-brane solution, with no awkward

factors

ds2 = f̃(r)dτ2 + f̃−1(r)dr2 + r2dΩ5
2 +

3∑

i=1

dxi
2

f̃(r) ≡ 1 −
(rBH

r

)4
(4.5)

with τ and the new xi having periods τBH ≡ 2π(M11R10)
−1/4R0 and 2π(M11R10)

−1/4Ri,

respectively.

Its Schwarzschild radius is large in string length units: rBH/ls = r0R10
1/4M11

5/4 À 1.

Therefore the curvature is small everywhere and supergravity is a good approximation.

Switching from this theory (which has a P0 symmetry, where P0 is the translation

τ → τ + τBH) to a theory orbifolded by P · (−1)Fs , with the same background fields, we

end up with a thermal black 3-brane in type IIB with temperature, coupling and string

length

TBH = 1/τBH = (M11R10)
1/4/(2πR0)

gsBH = eφ = (R10M11)
−3/2 ¿ 1

lsBH = R10
−1/2M11

−3/2 (4.6)

Its Schwarzschild radius is rBH = (M11R10)
−1/4r0, so the temperature satisfies the usual

relation (for a black 3-brane) TBH = 1/(πrBH ).

The 3-volume and the ADM-mass of the black brane are6

V3BH = (2π)3(M11R10)
−3/4

3∏

i=1

Ri

MBH = α0V3rBH
4/gs

2ls
8

= 16α0(2π)3(M11R10)
−7/4R0

4R10
7M11

15
3∏

i=1

Ri

α0 ≡ 5ω5

(2π)7
=

5

27π4
(4.7)

with ω5 = π3 the volume of a 5-sphere of unit radius.

The temperature, mass, 3-volume and Schwarzschild radius have been given in length

units which are normalized so that the string frame metric is asymptotically ηµν , which

is the correct normalization to be used when comparing supergravity and field theory, as

in [38, 39] 7.

6We are using here the conventions of [16].
7For comparison, length units which are normalized so that the Einstein frame metric is asymptotically

ηµν , are related to these by a factor of gs
−1/4.
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4.2 Reduction along x0: D3 − D̄3

Reducing (4.1) along the x0 cycle gives the following type IIA supergravity solution (in

Einstein frame)

ds2 = (M11R0)
1/4

[
f1/8(r)

(
dx10

2 + r2dΩ5
2 +

3∑

i=1

dxi
2

)
+ f−7/8(r)dr2

]

eφ = (R0M11)
3/2f3/4

ls = R0
−1/2M11

−3/2 (4.8)

with no p-forms.

The R0 dependence can again be understood by noting that we may redefine x0 →
(M11R0)

−1x0 before the reduction, so that the periodicity would be independent of R0,

and that would give g00 = (M11R0)
2f(r).

The Lorentzian form of this solution (with τ → it) is the solution (2.1) with (2.3) for

p = 3 (as can be seen after a coordinate transformation as in [19]). We have argued in

section 2 that this describes the non-BPS D3-brane of type IIA. As has been mentioned

earlier, it has been shown in [20] that the non-BPS D3-brane of type IIA is the result of

orbifolding the type IIB D3 − D̄3 system by (−1)FsL . The latter is S-dual to a D3 − D̄3

system with the same ls and Einstein frame metric, but with eφ = (R0M11)
−3/2f−3/4.

Its metric in string frame is

ds2 = (M11R0)
−1/2

[
f−1/4(r)

(
dx10

2 + r2dΩ5
2 +

3∑

i=1

dxi
2

)
+ f−5/4(r)dr2

]
(4.9)

By the following redefinitions

r → (M11R0)
−1/4r , r0 → rDD̄ ≡ (M11R0)

−1/4r0

x10 → τ ≡ (M11R0)
−1/4x10 , xi → (M11R0)

−1/4xi (4.10)

for i = 1, 2, 3, one arrives at the following solution

ds2 = f̂−1/4(r)

(
dτ2 + r2dΩ5

2 +
3∑

i=1

dxi
2

)
+ f̂−5/4(r)dr2

eφ = (R0M11)
−3/2f̂−3/4

f̂(r) ≡ 1 −
(rDD̄

r

)4
(4.11)

with τ and xi having periods τDD̄ ≡ 2π(M11R0)
−1/4R10 and 2π(M11R0)

−1/4Ri, respec-

tively.

Switching from this theory (which has a P10 symmetry, where P10 is the translation

τ → τ + τDD̄) to a theory orbifolded by P10 · (−1)Fs , with the same background fields, we

end up with a thermal D3− D̄3 system with temperature, asymptotic coupling and string

length

TDD̄ = 1/τDD̄ = (M11R0)
1/4/(2πR10)

gsDD̄ ≡ eφ∞ = (R0M11)
−3/2 ¿ 1

lsDD̄ = R0
−1/2M11

−3/2 (4.12)
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The 3-volume and the ADM mass of the system are

V3DD̄ = (2π)3(M11R0)
−3/4

3∏

i=1

Ri

MDD̄ = α0V3rDD̄
4/8gs

2ls
8

= 2α0(2π)3(M11R0)
−7/4R0

11M11
15

3∏

i=1

Ri

(4.13)

with α0 defined in (4.7); The 1/8 factor in the ADM mass comes from the 1/8 power of

f̂(r) in gtt in the Einstein frame. Again, length units are normalized so that the string

frame metric is asymptotically ηµν .

4.3 Comparison of entropies

The entropy of a black 3-brane with a 3-volume VBH and an ADM-mass MBH is [9, 40]8

SBH = 2
15
4 5−

5
4 π2 gsBH

1/2 lsBH
2 VBH

− 1
4 MBH

5
4 (4.14)

The entropy of a thermal D3 − D̄3 system with a 3-volume VDD̄ and an ADM-mass

MDD̄ was argued in [9] to be (assuming (1.3))

SDD̄ = (nb/6)
1
4 23 5−

5
4 π2 gsDD̄

1/2 lsDD̄
2 VDD̄

− 1
4 MDD̄

5
4 (4.15)

where nb is the number of bosonic degrees of freedom in the (strongly coupled) field theory

living on each of the decoupled D3s and D̄3s, and is assumed to be nb = 6 by comparison

with strongly coupled field theory on D3s alone. This estimate was done by using a

field theory description which was justified in [9]. The energy and temperature of the field

theory are assumed to coincide with the mass and temperature of the D3−D̄3 supergravity

solution. Note however that there is no exact open string - closed string duality, and in

principle the energies and temperatures of both sides may differ.

The thermal equilibrium temperature of the D3 − D̄3 system is [9]

Tequ = (∂MDD̄/∂SDD̄)VDD̄
= 23/2/πrDD̄ (4.16)

It is easy to verify that rDD̄ À lsDD̄.

It is easy to see that if we neglect numerical factors, then by setting R10 = R0,

the mass, 3-volume, string length and gs, as well as the temperature, will be equal in

both systems. Additionally, the temperature is of the same order as (4.16), so that the

condition (1.3) is satisfied and the D3 − D̄3 system is close to equilibrium. Since(4.14)

and (4.15) are identical as functions of M , V , gs and ls, we get the same entropy for both

systems (neglecting numerical factors), as expected.

Note that by relating R0 and R10, the three parameters of the black hole rBH , gsBH

and lsBH are no longer independent, so we consider only a two-parameter subspace of the

8Note that (∂S/∂M)V = πrBH = 1/TBH .
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full three-parameter space. However we are trying to match up with Bekenstein-Hawking’s

formula, which depends only on a two-parameter space as well (since gs and ls do not

appear in the formula separately but only in the combination gsls
4).

We now turn to a precise comparison of the entropies of both systems. substituting

for the values found in (4.6), (4.7), (4.12, 4.13) we get for (4.14) and (4.15)

SBH = 23R0
5R10

5M11
13

3∏

i=1

Ri

SDD̄ = 2−
3
2 R0

10M11
13

3∏

i=1

Ri (4.17)

Note that TDD̄/Tequ = 2−3/2R0/R10. Thus in order for the D3 − D̄3 system to be at

thermal equilibrium, we choose R10 = 2−3/2R0, so that TDD̄ = Tequ. This gives us

SBH =
1

8
SDD̄ (4.18)

With this choice, the (−1)Fs in the two theories are done along cycles of different asymptotic

radii. Indeed the ratio between the radii is

τBH

τDD̄

= (R0/R10)
5/4 = 215/8 (4.19)

Thus we expect the theory in the asymptotic flat regime of both sides to be different.

This suggests that the energy and temperature of the D3 − D̄3 field theory may be

equal to the mass and temperature of the D3 − D̄3 supergravity solution only up to a

constant, as there is no exact open string - closed string duality. Thus it may be possible

to have R10 = R0 and TDD̄/TFT = 2−3/2 with TDD̄ the temperature of the D3 − D̄3

supergravity solution and TFT the temperature of the corresponding field theory, which

turns out equal to its equilibrium temperature Tequ. In such a case the two theories (the

black 3-brane and the D3− D̄3) have the same asymptotic flat regime (in the supergravity

description), and both are in thermal equilibrium. In fact the theories will also have the

same string length, asymptotic coupling and 3-volume (the ADM masses, however, will

have a relative factor of 8; the total energy of the field theory may be related to these by

yet another factor). Another (possibly complementary) possibility is that nb, the effective

number of bosonic degrees of freedom in the D3 − D̄3 system, is not exactly 6.

If we insist that the temperature and total energy are the same in the field theory and

the supergravity descriptions of D3 − D̄3, and we want to keep nb = 6, we may still ask

what would happen if R10 = R0. This yields two theories with the same temperature (as

τBH = τDD̄), asymptotic coupling, string length and 3-volume. However, the D3 − D̄3

system is no longer at thermal equilibrium. This means that the entropy is no longer

maximized with respect to the number of brane-antibrane pairs N , and the system will be

unstable. But since the tachyon between the branes and antibranes became massive with

mass much greater than the temperature, we may assume that the system is metastable;

we may think of it as an overcooled D3 − D̄3 system. This approximation will be valid if

the time it takes for brane-antibrane pairs to annihilate is large compared to other time

scales in the problem. This scenario is further investigated in appendix E.
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4.4 Annihilation to closed strings

We related the chargeless black 3-brane to the D3 − D̄3 system. The descriptions of both

systems break down at the limit gsN ∼ 1. It is interesting to see what happens to both

systems as we approach this limit. We will now show that both behave similarly.

Let us consider at which limit the D3 − D̄3 system description breaks down. If we

adiabatically change gsN we may change the temperature accordingly in order to main-

tain (1.3) and stabilize the system. This can no longer be done as gsN becomes of order 1

or smaller, because the tachyon remains tachyonic even close to the Hagedorn temperature,

and the brane-antibrane pairs are eventually all annihilated, with the energy emitted as

closed strings.

Let us now consider what happens to the chargeless black 3-brane at the same limit.

In the brane-antibrane system [9]

M ∼ NV/gsl
4
s (4.20)

This is related to a black 3-brane with mass of the same order, and this mass satisfies

M ∼ r4
BHV/g2

s l
8
s (4.21)

This implies

rBH ∼ (gsN)1/4ls (4.22)

Thus gsN ∼ 1 corresponds to rBH ∼ ls, which is where the black hole entropy becomes

equal to a string entropy, and thus a transition from black hole to strings is expected [41].

Therefore its energy should be emitted as closed strings for smaller gsN . We conclude that

the brane-antibrane system and the black brane both annihilate into closed strings at the

same limit.

4.5 Black hole degrees of freedom

We related the entropies of the thermal chargeless black 3-brane and the thermal D3− D̄3

system. By tracing this relation step by step it may be possible to relate the degrees of

freedom of one system to the degrees of freedom of the other system. The entropies of both

systems are equal only up to a numerical constant, so perhaps only a part of the degrees of

freedom can be related in this way. By using this method, we speculate that the massless

degrees of freedom of the chargeless black 3-brane, or at least a substantial part of them,

are D3 − D̄3 pairs and open strings stretched between them.

In the model [9] for the D3−D̄3 system, the degrees of freedom are D3−D̄3 pairs and

open strings stretched either between D-branes or between anti-D-branes. Let us see what

happens to these degrees of freedom as we go through the relation depicted in figure (1).

We will assume that the descent relations [21] among 3-branes and 4-branes are preserved

at large gs, although they have been defined and proved only at gs = 0.

First consider a single (spectator) D3 − D̄3 pair, in the D3 − D̄3 background on

the bottom right side of figure (1). We will now show that given the above assumption,

this is related to a single (spectator) D3 − D̄3 pair on the chargeless black three-brane
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background on the bottom left side of figure (1). Starting from the D3 − D̄3 system

background, and moving to its S-dual background, the spectator D3− D̄3 pair is dual to a

spectator D3 − D̄3 pair. The next step is Orbifolding by (−1)FsL , and this orbifold takes

a D3 − D̄3 pair to a non-BPS D3-brane. The orbifolded theory is type IIA string theory,

and the non-BPS D3-brane is a kink solution of the tachyon field on a D4− D̄4 pair. Such

a pair is wrapped over the three-torus and the time direction (x10 in our notation), and is

infinite in one dimension. In the lift to eleven dimensions, it is described by an M5 − M̄5

pair wrapped over the three-torus, x10 and x0. After compactification over x10 we get the

type IIA solution on the left side of figure (1), and the spectator M5− M̄5 pair turns into

a D4− D̄4 pair. Thus a spectator non-BPS D3-brane on the type IIA solution of the right

side of figure (1) is related to a spectator non-BPS D3-brane on the type IIA solution of

the left side. In a similar manner to what we have just described, this is related to a single

D3 − D̄3 pair on the chargeless black three-brane background on the bottom left side of

figure (1).

For the open strings stretched between the branes or between the antibranes in the

D3 − D̄3 system, one may not follow the relation of figure (1) so easily. Such an open

string is a D1-brane in the S-dual picture, stretched between D3-branes or between anti-

D3-branes. But after orbifolding the theory by (−1)FsL , the D1-brane does not survive the

orbifolding, because it has a (−1) charge under the (−1)FsL symmetry. Instead, it can be

thought of as a kink solution of the tachyon field on a single non-BPS D2-brane, but the

(−1)FsL orbifold takes this brane to a BPS D2-brane, which has no tachyon field. This is

because the tachyon field does not survive the orbifolding as well.

A different approach is to relate the open strings in the D3 − D̄3 system to degrees

of freedom in the black three-brane according to their relation to the spectator D3 − D̄3

pairs. Since spectator D3 − D̄3 pairs in the D3 − D̄3 system are related to spectator

D3 − D̄3 pairs in the chargeless black three-brane, it is most natural to assume that open

strings stretched between the branes (antibranes) in the D3 − D̄3 system are related to

open strings stretched between the branes (antibranes) in the chargeless black three-brane.

4.6 Charged black holes

We will now turn to discuss the relation between a charged black three-brane and a charged

D3 − D̄3 system, for a small charge, still far from extremality. Note that the D3 − D̄3

system must have unequal number of branes and antibranes. From the field theory point of

view [9] it turns out that the entropies of both systems are equal, up to the same numerical

constant as in the uncharged case, if one assumes that in the D3−D̄3 system the two gasses

of massless open strings, one living on the D-branes and the other living on the anti-D-

branes, have the same energy density (or pressure) rather than the same temperature. This

is possible since they are effectively decoupled from each other. The same assumption in

the D3− D̄3 field theory must be made in order to reproduce the black hole low-frequency

absorption and emission probabilities, again up to numerical factors [10]. For an alternative

field theory approach see appendix F.

We would like to relate the charged black three-brane and the charged D3 − D̄3 sys-

tem in the supergravity framework, as we did for the chargeless case. However a simple
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generalization is not possible, as will be explained below. Instead, for small charges (far

from extremality) we suggest the following construction of the relation: We have seen in

the previous subsection that a single D3 − D̄3 pair in the chargeless D3 − D̄3 system is

related to a single D3 − D̄3 pair in the chargeless black three-brane. This means that a

single D3-brane in each system is related to a single D3-brane in the other. Adding many

D3-branes to both systems would make them charged, and we get a relation between a

charged black three-brane and a charged D3 − D̄3 system. However this does not explain

the condition mentioned above, needed for the field theory description to give the black

hole entropy correctly, namely that the open string gas on the D-branes and the open string

gas on the anti-D-branes must have the same energy density.

A simpler generalization of our method to the charged case is not possible, because the

four-form is not invariant under the (−1)FsL symmetry, so this orbifold cannot be defined

on such a background. Using T-duality instead, in order to move from a type IIB solution

to a type IIA solution, breaks down the supergravity approximation, in particular because

the 3-volume becomes very small (compared to the string length) after T-duality.

5. Discussion and generalizations

We described a relation between the thermal chargeless black 3-brane and the thermal

version of a system that we interpret as the D3 − D̄3 system, for a particular value of

the asymptotic string coupling gs (with arbitrary string length ls and black brane mass;

alternatively, gs and the mass are arbitrary and the relation holds only for a particular

value of ls). In particular we expect their entropies to be of the same order of magnitude.

This may explain the comparison between the Bekenstein-Hawking entropy of the black

3-brane and the field theory entropy of the thermal D3−D̄3, which has been studied in [9].

The relation that we found agrees with that comparison, up to some numerical factors in

the different quantities in the problem (temperature, mass and entropy). These factors may

be the result of moving from the closed string picture to the open string picture though

there is no complete open-closed string duality; Thus the temperature, mass etc. may not

be exactly the same in the two pictures.

It is important to note that the approximation of [9] that the massless degrees of

freedom on the branes and antibranes are decoupled from each other, which was the basis

for their field theory description of the thermal D3 − D̄3, is arbitrarily good when ls, gs

are arbitrarily small and gsN arbitrarily large, but only for a specific temperature. Thus,

the system is stable as long as the temperature is fixed at the appropriate value, as we are

doing when we study the theory on a Euclidean time circle and set its radius. However,

the system is unstable once the temperature is allowed to change (it has a negative specific

heat [9], like the black 3-brane); Therefore a duality between open and closed strings holds

only for a specific energy scale, which agrees with the absence of a decoupling limit between

open and closed strings for the corresponding geometry.

One may wonder what would happen for other values of gs. The relation that we have

shown cannot be simply generalized because gs of one solution (either the black brane or

the D − D̄) translates to a combination of gs and the temperature in the other, and each
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solution is stable only for a specific value of the temperature. One possibility is that the

relation is still valid for other values of gs. The Bekenstein-Hawking formula for black hole

entropy depends on gsl
4
s rather than on gs and ls independently, so it is conceivable that a

black 3-brane with particular gs and ls can be described by a black 3-brane with different

values of gs and ls, as long as gsl
4
s is the same. If this is true, then any thermal black

3-brane is related to a thermal D3 − D̄3, where the latter has the appropriate relation

between gs and ls. Another possibility is that the black 3-brane and the D3 − D̄3 system

are two different phases in the space of solutions, and the phase transition occurs near the

point that we have identified. If the phase transition is of the 2nd order this would explain

why the two systems are similar at this point.

Our analysis cannot be extended simply to p 6= 3. For p = 1, 5, the S-dual of a

Dp− D̄p system consists of fundamental strings or NS branes. If these are left unchanged

by the (−1)FsL orbifold, as they are for gs = 0, then the description of the system in type

IIA may be different than the one we have found. For an even p one should use type

IIA superstring, but then one cannot perform the final S-duality we have used, and the

asymptotic string coupling remains large (gs À 1). A field theory description in terms of

a Dp − D̄p system for p < 6, in strong coupling (gsN À 1), has been given in [9, 12, 13],

including for a non-vanishing angular momentum, with a similar success as in the p = 3

case. A different counting, in terms of branes and fundamental strings, have been suggested

in [8] for p = 1, 5. The interested reader may refer to [42, 43] which have used a different

method (allowing a conical singularity) for p = 6 and have compared either the black brane

or the brane-antibrane system to an orbifold construction in the supergravity framework;

however one should bear in mind that in such a case R10 ¿ (M11)
−1 if gs is small, since

gs = (R10M11)
3/2, which makes the 11 dimensional supergravity approximation dubious.
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A. The energy-momentum tensor at the singularity

In this section we compute the components of the energy-momentum tensor at the singu-

larity in r = r0 by the method of [26], for all the chargeless asymptotically flat supergravity

solutions with symmetry ISO(p + 1) × SO(9 − p), i.e. (2.1) with c2 = 0. We show that

they all obey the relation Tij = −T00δij , which was suggested in [9] to hold for the brane-

antibrane system at zero temperature. A similar computation has been done in [44], with

a different interpretation.

The asymptotic Einstein frame metric, to sub-leading term in 1
(r−r0)7−p , is gµν =

ηµν + hµν with

h00 =
7 − p

16
((3 − p)c1 − 4c3k)

(
r0

r − r0

)7−p
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hij = −7 − p

16
((3 − p)c1 − 4c3k)

(
r0

r − r0

)7−p

δij

hab =
p + 1

16
((3 − p)c1 − 4c3k)

(
r0

r − r0

)7−p

δab (A.1)

where i, j stand for the directions parallel to the brane, and a, b for the directions perpen-

dicular to it.

hµν satisfies the harmonic gauge condition

∂λhµ
λ − 1

2
∂µh = 0 , h ≡ ηµνhµν (A.2)

The linear Einstein equations simplify to

∂λ∂λ

(
hµν − 1

2
ηµνh

)
= −16πGTµν (A.3)

This gives

T00 =
7 − p

32πG
ω8−p ((3 − p)c1 − 4c3k) r0

7−pδ9−p(x⊥)

Tij = − 7 − p

32πG
ω8−p ((3 − p)c1 − 4c3k) r0

7−pδ9−p(x⊥)δij

Tab = 0 (A.4)

where ω8−p is the 8− p volume of an S8−p of unit radius, and δ9−p(x⊥) is a delta function

in all directions perpendicular to the brane.

B. The horizon 8-volume and temperature

In a part of the space of the asymptotically flat solutions described in [15] (which includes

all solutions of the type (2.1)), gtt vanishes as r → r0. We will refer to this limit as a

”horizon”, although this is not precise since (except for in the Strominger-Horowitz black

brane) the curvature is singular at this limit, so geodesies cannot be continued beyond this

point.

The ”horizon” 8-volume, for 0 ≤ p < 7, is given by

AH =

∫

r=r0

8−p∏

i=1

√
giidθi

p∏

α=1

√
gααdxα = lim

r→+r0

ω8−pVpr0
8−p · e(8−p)B+pA ∼ lim

r→+r0

f−
W (r)

(B.1)

Here i runs over angles in S8−p and α over vectors in T p. Vp is the T p volume and ω8−p

is a unit S8−p volume. e2A = gαα (α = 1 . . . p) and e2B = grr in the Einstein frame, in

isotropic coordinates. f− is defined in (2.1).

W is defined as

W ≡ 1 +
1

7 − p
+

p − 3

8
c1 +

p + 9

32
c2 +

1

2
c3k (B.2)
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with c1,2,3 and k as in (2.1). This can be generalized for the charged case (i.e. general c3)

by replacing c3 → −1 for every c3 6= 1. For p = −1, W is not given by (B.2), but is rather

equal to 9
4 .

It can be shown that W is always positive, which implies that the ”horizon” 8-volume

vanishes, except for the black brane solution (2.2), where W = 0 and the horizon area is

finite.

The temperature T of a geometry with a horizon can be computed in two different

methods, both yielding the same value:

(a) By performing a Bogoliubov transformation between propagating modes locally defined

in past null infinity and propagating modes locally defined in future null infinity. This gives

particle production rates which correspond to thermal radiation of temperature T = κ/2π

with κ the horizon surface gravity.

(b) By analytically continuing to Euclidean metric (t → ix0). There is no conical singularity

only if the periodicity of x0 is precisely β ≡ 2π/κ.

We may want to interpret the limit r → r0 as a horizon, and calculate the temperature.

Both methods yield an infinite temperature for all solutions except for the Strominger-

Horowitz black branes. This result agrees with the thermodynamic relation

β ≡ 1

T
=

∂S

∂U
= const. · ∂AH

∂M
(B.3)

where AH is the horizon area (or 8-volume in the 10 dimensional case) computed in the

Einstein frame. In our case AH is zero while M depends on the parameters c1, c2, r0, so

the right hand side of (B.3) is zero. This indeed implies T ∼ ∞.

The temperature is calculated as follows: We start with the metric

ds2 = −F1(r)dt2 + F2(r)dr2 + . . . (B.4)

where F1 vanishes for r → r0. We make the coordinate change r → ρ where

ρ =

∫ r

r0

√
F2(r̃)dr̃ (B.5)

Then

ds2 = −F1 (r(ρ)) dt2 + dρ2 + . . . (B.6)

with F1(r) vanishing at ρ = 0. If near that point F1(r) ∼ κ2ρ2 for some constant κ then

the temperature is T = 1/β = κ
2π . Thus

2πT = κ =
d
√

F1

dρ |ρ=0

= lim
r→r0

F1
′

2
√

F1F2
(B.7)

with the prime denoting a derivative with respect to r. The surface gravity at r = r0 is

equal to κ.

For the solutions to the metric we are interested in, F1 and F2 are given by (2.1)

F1 = F γ1
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F2 = (f− f+)
2

7−p F γ2

γ1 ≡ (7 − p)(3 − p) c1 + (2(7 − p) + 1
4 (3 − p)2 − 32)c2 − 4(7 − p)c3k

32

γ2 ≡ −(p + 1)(3 − p) c1 + 1
4(3 − p)2c2 + 4(p + 1)c3k

32

F ≡ f−
f+

f± ≡ 1 ±
(r0

r

)7−p
(B.8)

(B.9)

F and f− vanish as r → r0. We are interested in the case γ1 > 0, so that F1 vanishes at

this limit as well. (B.7) is

lim
r→r0

F1
′

2
√

F1F2
= lim

r→r0

γ1

2
F ′

(
f−
f+

)(γ1−γ2)/2−1

(f− f+)−
1

7−p (B.10)

F ′(r0) = 7−p
2r0

and f+(r0) = 2 . Therefore the temperature is

T =
κ

2π
= 2−γ− 2

7−p
−3 7 − p

πr0
γ1 lim

r→r0

·f−γ

γ ≡ (γ1 − γ2)/2 − 1 − 1

7 − p
(B.11)

T is finite for γ = 0. However this happens only for the Strominger-Horowitz black brane

solution (2.2). For all other solutions (2.1) γ < 0 and the temperature is infinite. Note that

γ = −W with W defined in (B.2). Here, too, the results can be extended to the charged

case, by replacing c3 → −1 for every c3 6= 1.

Note that this calculation is done in Einstein frame, where the equations of motion

take a simple form9 10.

Upon lifting to 11 dimensions, we may perform the same procedure in the 11 di-

mensional metric, with the only change being a shift of γ1 and γ2 by an equal constant,

so that γ remains unchanged. Thus the Hawking temperature in 11 dimensions is still

infinite, except for when the new γ1 (after the shift) is zero, in which case the time direc-

tion is flat and any temperature can be defined. For solutions (2.1) with the symmetry

ISO(p + 1) × SO(9 − p), namely c2 = 0, this happens precisely for the case (2.3), and

in addition for the same case but with the sign of c1 and c3 flipped (namely, the case

(c1, c2, c3) = (−12−2p
7−p , 0, sign(p − 2))); Equivalently, we take r0 → −r0. It is easy to verify

that the last set of solutions have a negative ADM mass in 10 dimensions.

9Incidentally, if one replaces the Einstein frame metric by the string frame metric, the result does not

change, again yielding an infinite temperature whenever gtt vanishes at r → r0, because shifting from

the Einstein frame to the string frame is implemented by shifting γ1 and γ2 by an equal constant and

so γ remains unchanged; We assume gtt still vanishes at r → r0 so γ1 is positive even after the shifting.

Nevertheless, we do not know if this result has any meaning.
10This has nothing to do with the fact that the proper normalization of the temperature, when comparing

supergravity and field theory as in [38, 39], is such that the length units are normalized so that the string

frame metric is asymptotically ηµν (rather than the Einstein frame metric).
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The infinite temperature can be understood as follows: For a sub-extremal black brane,

the temperature is positive and the singularity is hidden behind the horizon, which is a

surface of infinite redshift. For a super-extremal black brane, the temperature is negative

and the singularity is naked, with the ”horizon” (a surface of infinite redshift) behind it.

In our case the singularity is infinitely redshifted and so lies ”on the horizon”, in a sense,

and we get an infinite temperature. In the extremal case the temperature is zero.

Finally we give the D6 − D̄6 as an explicit example, in light of the second approach

mentioned above, namely computing the temperature via the analytic continuation to

Euclidean metric and curing its conical singularity by making t periodic.

The Einstein frame metric of the D6 − D̄6 in isotropic coordinates is [16, 18]

ds2 =

(
r − r0

r + r0

)1/4

dxµdxµ + r−4(r − r0)
1/4(r + r0)

15/4
(
dr2 + dΩ2

2
)

(B.12)

with µ = 0, 1 . . . 6. For r ∼ r0 let us define r̂ = (r − r0)
9/8. Then at this limit, suppressing

factors of r0 and 2 (which can be omitted by a rescaling of the coordinates), we obtain

ds2 ∼ −r̂2/9dt2 + dr̂2 + . . . (B.13)

Taking only this part of the metric and analytically continuing to a Euclidean metric

t → ix0 gives

dsE
2 = r̂2/9dx0

2 + dr̂2 (B.14)

This metric has a singularity at r̂ = 0 which is not conical (in fact, a naked curvature

singularity). Clearly it cannot be cured by making x0 periodic. Thus no finite temperature

can be naturally assumed.

C. The effective potential for a minimally coupled scalar

Dp-branes for p < 6 admit a decoupling limit [45], for which the gravitational source (i.e.

the brane) is decoupled from the asymptotic regime. This limit can be implemented either

by taking a near-horizon limit of the metric, or by computing the scattering of gravitons

and minimally coupled scalars off the D-brane and taking the limit where the former

decouple from the latter [46]. The last method can be qualitatively appreciated also by

computing the effective potentials felt by a minimally coupled scalar and by a graviton; in

the decoupling limit the potential will have a barrier of infinite height which scatters the

scalar and the graviton back. By this method it has been shown in [46] that D6-branes

have no decoupling limit.

In this section we show that there is no decoupling limit in any of the chargeless

solutions, by calculating the effective potential felt by a minimally coupled scalar and show

that there is no limit in which the potential has an infinitely-height barrier. In fact, the

potential is always negative. This is an extension of results appearing in [16]. Explicit

calculations of scattering amplitudes are beyond the scope of this work.

A minimally coupled scalar Φ(r, t) = Φ(r)eiωt admits the following equation of motion

0 = ∇µ∇µΦ = g−
1
2 ∂µ

(
g

1
2 ∂µΦ

)
=

[
−gttω2 + g−

1
2 ∂r

(
g

1
2 grr∂r

)]
Φ (C.1)
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where the metric is in the Einstein frame, is assumed to depend only on r, and g is its

determinant.

For a metric with ISO(p) × SO(9 − p) symmetry, using the notations of [15] we get

the following equation for Φ(r)

Φ′′ − h′′

h′ Φ
′ +

e2(B−A)

f
ω2Φ = 0 (C.2)

in isotropic coordinates, where −fe2A = gtt, e2A = gαα (α = 1 . . . p), e2B = grr and

h = ln(f−/f+) where f± defined as in (2.1). A prime stands for a derivative with respect

to r.

By redefining the scalar field: ϕ(r) ≡ Φ(r)h′−1/2 we get the Schrödinger equation:

ϕ′′ − V (r)ϕ = 0 (C.3)

with

V (r) =
1

4

(
h′′

h′

)2

− 1

2

(
h′′

h′

)′
− ω2 e2(B−A)

f
(C.4)

For chargeless solutions (c3 = ±1) we get

V (r) = − 1

r2




(7 − p)2
(

r0
r

)2(7−p)

[
1 −

(
r0
r

)2(7−p)
]2 − 1

4
(7 − p)2 +

1

4




− ω2

[
1 −

(r0

r

)2(7−p)
] 2

7−p

·
[

1 −
(

r0
r

)7−p

1 +
(

r0
r

)7−p

]β

β ≡ p − 3

4
c1 +

p + 9

16
c2 + c3k (C.5)

with c1,2,3 and k as in (2.1).

V is always negative for p = 6. For a lower p and for low enough ω, V is positive in

some range of r and has a maximum, but there is no limit in which this maximum becomes

infinite. Therefore there is no limit in which the scalar is decoupled from the gravitational

source.

Note that for the black brane solutions (2.2) , β = −2 − 2
7−p , while for the solu-

tions (2.3), which we interpret as the brane-antibrane system, β = − 2
7−p .

As examples, we give here the potential V for these solutions with p = 3 and p = 6, in

isotropic coordinates (we take units in which r0 = 1 for simplicity)

Vblack 6−brane = − 1

(1 − r2)2
− ω2 (1 + r)6

(1 − r)2r4

Vblack 3−brane =
15 − 94r8 + 15r16

4(1 − r8)2r2
− ω2 (1 + r4)3

(1 − r4)2r4

VD6D̄6 = − 1

(1 − r2)2
− ω2 (1 + r)4

r4

VD3D̄3 =
15 − 94r8 + 15r16

4(1 − r8)2r2
− ω2 1 + r4

r4
(C.6)
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D. Comments on orientation of non-BPS branes

If non-BPS branes have a relative orientation, so that two non-BPS branes can have either

the same orientation or opposite orientations, then the system of N non-BPS branes that

is discussed in section 3 may be interpreted as consisting of N1 non-BPS branes of one

orientation and N2 of the opposite orientation. Thus its orbifold results in N1 branes and

N2 antibranes.

It has been shown [20, 21] that the non-BPS Dp-brane in type IIB (IIA) can also be

thought of as a kink solution of the complex tachyon on a D(p + 1)− D̄(p + 1) pair of type

IIB (IIA). Similarly, the BPS D(p-1)-brane (antibrane) is a kink (anti-kink) solution of the

real tachyon on a non-BPS Dp-brane.

It has been shown in [20], for a particular example, that a D(p − 1)-brane and a

D(p − 1)-antibrane far away from each other, on two apposite points of a circle, can be

described by a kink and an anti-kink solutions of the real tachyon on a non-BPS Dp-brane,

glued to each other.

Similarly, for the complex tachyon field on a D(p + 1) − D̄(p + 1) pair on a circle, we

expect there to be a solution which can be described as a kink - anti-kink pair, at least for

a large enough circle. We later show that every complex tachyon potential V (|T |) which

has a saddle point at |T | = T0, T0 6= 0, indeed has a solution on a circle which describes

a kink-antikink pair as the circle circumference approaches infinity. We find the solution

explicitly for a potential of the simplified form V (|T |) = −m
2 T 2 + λ

4 T 4.

These kink and anti-kink have opposite orientations in spacetime (they are related by

a Z2 reflection in the xp+1-axis). Thus they describe two non-BPS Dp-branes which are

not identical, which we shall call two non-BPS Dp-branes of opposite orientations. By

generalization from the D(p− 1)− ¯D(p − 1) case, it should be expected that two non-BPS

Dp-branes of opposite orientation can also be adjacent.

This does not mean that non-BPS branes have a Z2 conserved charge. Because a

non-BPS Dp-brane is a kink solution of a complex tachyon field, there is a continuous

deformation between the kink and the anti-kink solutions, i.e. between the two non-BPS

branes discussed above. Both can also be deformed to the vacuum, and indeed a non-BPS

brane of this type is unstable. This is in contrast to the Dp-brane and the antibrane, which

cannot be continuously deformed to each other and have in fact different charges under the

RR p + 1-form.

Let us first show an explicit example with

V (|T |) = −m2

2
|T |2 +

λ

4
|T |4 (D.1)

Let us consider solutions which depend only on xp+1. For simplicity, we denote x ≡ xp+1.

The equation of motion reads

∂2T

∂x2
= −m2T + λT |T |2 (D.2)
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By rescaling x and T we may fix m = 1, λ = 1. Then the most general solution for which

T = 0 at x = 0 is given by the Jacobi elliptic function

T = eiθ
√

1 − a · sn

(√
1 + a

2
x

∣∣∣∣
1 − a

1 + a

)
(D.3)

with a ≡
√

1 − 2|T ′(0)|2 and θ is an overall phase. For |T ′(0)| = 1/
√

2 this is the kink

solution tanh( x√
2
). For smaller |T ′(0)| the solution is sine-like periodic, and for a larger

|T ′(0)| the solution is tangent-like. For |T ′(0)| < 1
2 the periodicity is monotonically in-

creasing in |T ′(0)|. Thus on a large circle, there is a solution with precisely one period,

which resembles a kink-antikink solution, and at the limit where the size of the circle goes

to infinity, this solution can be seen as gluing a kink and an anti-kink solutions.

Finally, we generalize this result to any V (|T |) which has a first saddle point at |T | =

T0, T0 6= 0. The equation of motion is

∂2T

∂x2
=

dV (|T |)
dT̄

= 2F ′(|T |2)T (D.4)

where F (|T |2) = V (|T |). Both sides have the same phase. For a solution which satisfies

T (0) = 0, the solution depends only on ∂xT|x=0. Thus the solution has an overall phase

which is equal to that of ∂xT|x=0, and otherwise it is enough to solve for real T .

The most general non-trivial solution with real T and T (0) = 0 is

x(T ) = ±
∫

dT√
2 (V (|T |) − V (T0)) + c

(D.5)

note that this function has an odd parity.

For c = 0 the integrand diverges at T = T0. Thus this is the kink (or anti-kink)

solution, with |T | → T0 at x → ±∞ (that x reaches infinity as |T | → T0 can bee seen by

noting that otherwise we would have an x at which both dT/dx and d2T/dx2 vanish, and

the T would therefore be constant).

For a positive c, the integrand is finite even at T = T0 and the solution T (x) goes

beyond the T0 point, as in the tangent-like solutions described above for the polynomial

potential. If T0 = ∞, however, this is just another kink (or anti-kink) solution.

For a negative c, the integrand diverges at T = T1 for some T1 < T0. The integral

from 0 to T1 converges (this is because dV/dT is non-zero at T1, so the contribution to the

integral near T1 is ∼
∫

dT√
T−T1

). Let us denote it x1 ≡ x(T1). dx/dT diverges at T1; Thus

dT/dx vanishes at ±x1. We will now show that the solution T (x) is a sine-like periodic

function.

The full solution T (x) is an extension of the inverse function of (D.5) beyond the range

(−x1, x1). Through the equation of motion, the second derivative of T (x) is equal to a

function of T only. Thus every even derivative of T with respect to x is equal to a sum

of terms of the form fk(T )(∂xT )2k, and every odd derivative of T with respect to x is

equal to a sum of terms of the form f̂k(T )(∂xT )2k+1, with k ≥ 0 and fk(T ), f̂k(T ) some

functions of T only. ∂xT|x=x1
= 0, so all the odd derivatives of T vanish at x1. Thus T (x)
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can be smoothly continued beyond x1 according to T (x) = T (2x1 − x). Similarly, T can

be continued beyond −x1. T is therefore a function of odd parity, extrema at ±x1 and

periodicity 4x1. This solution can be put on a circle of this circumference.

To conclude, every potential V (|T |) with a first saddle point at |T | = T0, T0 6= 0, has

a kink solution. On a finite circle it has a solution for which T is always finite and crosses

zero once in each direction. As the circumference of the circle approaches infinity, this

solution describes a kink - antikink pair.

E. An overcooled D3 − D̄3 system

Suppose that we insist that the temperature and total energy are the same in the field

theory and the supergravity descriptions of D3 − D̄3, and we want to keep nb = 6. Let us

see what would happen if R10 = R0. This yields two theories with the same temperature

(as τBH = τDD̄), asymptotic coupling, string length and 3-volume. However, the D3− D̄3

system is no longer at thermal equilibrium. This means that the entropy is no longer

maximized with respect to the number of brane-antibrane pairs N , and the system will

be unstable. But since the branes and antibranes are decoupled11, we may assume that

the system is metastable; we may think of it as an overcooled D3 − D̄3 system. This

approximation will be valid if the time it takes for brane-antibrane pairs to annihilate is

large compared to other time scales in the problem.

The mass and entropy of the D3 − D̄3 system can be written in terms of N and the

temperature T as [9]

MDD̄ = 2Nτ3V +
3

4
π2N2V T 4

SDD̄ = π2N2V T 3 (E.1)

where τ3 ≡ 1/(2π)3gsls
4 denotes the D3-brane tension, and we are suppressing the DD̄

subscript for convenience when there is no ambiguity.

For a given temperature T and 3-volume V we get

SDD̄ =
4
(√

3Mπ2V T 4 + 4V 2τ3
2 − 2V τ3

)2

9π2T 5V
(E.2)

Since in this scheme

TDD̄ = TBH = 1/πrBH = 1/πrDD̄ = 51/42−5/2π−2gs
−1/2ls

−2(MDD̄/V )−1/4 (E.3)

The entropy is

SDD̄ =
143 − 16

√
79

9
2

9
2 5−

5
4 π2gs

1/2ls
2M

5/4

DD̄
V − 1

4 (E.4)

Which has the same functional form as (4.14) and (4.15), up to a numerical factor.

By substituting for the values found in (4.12), (4.13) with R10 = R0 we get

SDD̄ = S =
143 − 16

√
79

9
M11

13R0
10

3∏

i=1

Ri =
143 − 16

√
79

72
SBH ∼ 10−2SBH (E.5)

11in particular, the tachyon - which is related with the annihilation of brane-antibrane pairs - is massive

with mass much greater than the temperature.
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F. Introducing a chemical potential to the D3 − D̄3 FT

A charged D3 − D̄3 system whose field theory reproduces the charged black three-brane

entropy, up to a numerical factor, has been given in [9]. We explore here another possibility,

which is to introduce a chemical potential to the D3− D̄3 system 12. Thus the energy and

entropy of the system will be

M = (N + N̄)τ3V + nb
π2

16
(N2 + N̄2)V T 4 + (N − N̄)µ

S = nb
π2

12
(N2 + N̄2)V T 3 (F.1)

where N and N̄ are the numbers of branes and anti-branes, respectively, τ3 is their tension,

and µ is the energy cost of having more branes than anti-branes (i.e. of having a non-

vanishing net charge). S as a function of M , N , N̄ , V and µ is

S =
2

3
π1/2

(
(N2 + N̄2)nbV

)1/4 (
M − (N − N̄)µ − (N + N̄)τ3V

)3/4
(F.2)

minimizing with respect to N and N̄ we get S as a function of M , V and µ, and

µ =
−M +

√
M2 − 25V 2(N − N̄)2τ3

2

5(N − N̄)
(F.3)

Replacing µ for this expression in S(M,V, µ) and using Q = N − N̄ we get S(M,V,Q).

We are interested in the far-from extremal regime and we thus expand around Q = 0 and

get (assuming nb = 6)

S = 23/25−5/4π1/4κ1/2V −1/4M5/4 − 2−5/253/4π5/4κ−3/2V 7/4M−3/4Q2 + O
(
Q4

)
(F.4)

with κ =
√

π/τ3.

The supergravity entropy13 S(M,V,Q) can be expanded in a similar way, and the

expansion yields

S = 29/45−5/4π1/4κ1/2V −1/4M5/4 − 2−11/453/4π5/4κ−3/2V 7/4M−3/4Q2 + O
(
Q4

)
(F.5)

The first terms of (F.4), (F.5) are simply the zero-charge cases that have already been

discussed. Comparing the second terms we see that although the numerical coefficients are

different, at least the sign and order (i.e. having no first order term in Q) are correct14.

12We thank Z. Komargodski for this suggestion.
13see [9] for references
14Having no first order term is a consequence of a symmetry of the entropy under Q → −Q. In super-

gravity this symmetry is trivial; in our field theory description this is due to the symmetry under flipping

(µ, N, N̄) → (−µ, N̄, N). Since N and N̄ do not appear in the maximized entropy formula S(M, V, µ), it is

symmetric under µ → −µ, and so after replacing µ by Q we get the Q → −Q symmetry.
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